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Theory and Applications of Coupled Optical
Waveguides Involving Anisotropic or

Gyrotropic Materials
KENICHI KITAYAMA, MEMBER, IEEE, AND NOBUAKI KUM,AGAI, SENIOR MEMBER, IEEE

Abstract—Coupled optical waveguides consisting of two isotropic

dielectric slab waveguides coupled through aaisotropic or gyrotropic
materials inserted between them, are treated theoretically in detail. The

properties of reciprocal and nonreciprocal TE-TM mode conversion and

a nonreciprocal phase shift for TM modes are shown. As an example of

applkation of this type of coupled waveguide, a nonreciprocal optical
integrated circuit (IC) mode converter is proposed. It is shown that a
circulator and an isolator which require neither mode separators nor
mode filters eaa be constricted by utilizing the proposod nonreciprocal
mode converter. The numerical design examples are also given.

I. INTRODUCTION

o

PTICAL integrated circuits (IC’S) with anisotropic or

gyrotropic materials are of great interest from both

the theoretical and the practical points of view. SO far, the

electromagnetic wave modes propagating along an aniso-

tropic or gyrotropic slab waveguide have been analyzed by

several authors [1]–[3], and various optical IC devices such

as mode converter, isolator, circulator, etc., using a wave-

guide involving an anisotropic or gyrotropic medium have

been proposed [4]-[9].

In the present paper, the coupled optical waveguides,

consisting of two parallel isotropic dielectric slab wave-

guides coupled through anisotropic or gyrotropic materials

inserted between them, are considered. This is one of the

simplest and most typical configurations of the optical IC

involving an anisotropic or gyrotropic material. For

example, an optical modulator using this type of coupled

waveguide has been proposed previously [10:]. To the

authors’ knowledge, however, the detailed analysis of the

aforementioned coupled waveguides has not yet been

reported so far.

In this paper, the general features of the wave propaga-

tion characteristics of this type of coupled waveguide are

analyzed theoretically in detail, and the nonreciprocal

optical IC mode converter is proposed as an example of

application. It is shown that a circulator and an isolator

requiring neither mode separators nor mode filters can be

constructed utilizing the proposed nonreciprocal mode

converter. The numerical design examples are also given.
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Fig. 1. Geometry of the coupled dielectric slab waveguides coupled
through anisotropic or gyrotropic material.

II. WAVEGUIDE CONFIGURATION AND THE BASIS

OF ANALYSIS

A. Waveguide Configuration

The coupled waveguide to be considered is a two-

dimensional structure, as shown in Fig. 1, being uniform in

the y direction. The direction of wave propagation is

parallel to the z axis. Lines 1 and 2 are the isotropic dielectric

slab waveguides whose permittivity is .sOrcfwhere e. is the

permittivity in vacuum. The medium between lines 1 and 2

is anisotropic or gyrotropic with tensor permittivity &ok.

The permittivity tensors eok~ and eok~ in regions A and B,

respectively, are assumed to be diagonal. It is assumed that

the permeabilities in all regions are equal to the permea-

bility in vacuum PO. It is assumed further that the media

involved are dissipation free.

The specific permittivity tensor R is expressed, in general,

in the form

‘=[35 :1 ‘1)

where the asterisk denotes the complex conjugate. We shall
distinguish the anisotropic material from the gyrotropic

material in the following manner: The anisotropic material

is a matter for which all the off-diagonal terms in i? are real

while the gyrotropic material is a matter for which all the

off-diagonal terms in k are pure imaginary. The diagonal
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TABLE I
CLASSIFICATION OF PSRTURBED SYS~MS
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‘.Y v ‘Y. Y.
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Fig. 2. Geometry of two individtial basic lines. (a) The basic con-
figuration of line 1. (b) The basic configuration of line 2.

( * The direction of applied ruagnetic field ) .

l—elementary nodes of line 1 A

terms in ~ are real for both anisotropic and gyrotropic

media. The anisotropic property can be realized by applying

an electric field to the electrooptic materials, or rotating the

crystal axis of the optical crystals. The gyrotropic property,

on the other hand, can be obtained by applying a magnetic

field to the magnetooptic materials.

B. Basis of the Analysis

In most practical cases, the change of the material con-

stants of electrooptic or magnetooptic materials caused by

tlhe applied electric or magnetic fields is very small. There-

fore, the coupled waveguides system shown in Fig. 1 can

be regarded as a slightly perturbed system, perturbed from

an unperturbed system which possesses the diagonal per-

mittivity tensor eok’ in place of .@, where f’ is given by

[1

K o
t’= iTK:y () (unperturbed). (2)

o 0 7CZZ

The nonzero off-diagonal terms in r? are thought to appear

as a result of slight perturbation caused by the applied

electric or magnetic fields. It is assumed that the diagonal

terms in t and the tensor permittivities ~~ and &in regions

A and B are not affected by the applied fields.

According to the positions of nonzero off-diagonal terms

in i2, the perturbed coupled waveguides system shown in

Fig. 1 can be classified in three categories [7]. These are

longitudinal (L), polar (P), and equatorial (E) perturbations

as shown in Table I. Further, each perturbation is divided

into anisotropic (A) and gyrotropic (G) types. Consequently,

we have to treat the wave propagation characteristics about

the aforementioned six perturbed systems.

Let us consider now two individual basic waveguide

systems as shown in Fig. 2(a) and (b). This figure shows the

basic configurations of the individual lines 1 and 2. The

medium of permittivity tensor eO# extends in the regions of
x s tand x > – tfor the basic configurations of the indi-

vidual lines 1 and 2, respectively. Hereafter, we shall refer to

the guided modes propagating in these two individual basic

waveguide systems as elementary modes.

Fig. 3 illustrates numerically the propagation constants

of the lowest two elementary modes of lines 1 and 2.
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Fig. 3. Dispemion curves for the lowest two elementary modes
propagating along each individual basic line.

The values of the permittivities in the regions used in the

numerical calculations are shown in the same figure.

The values used as a numerical example correspond to

the following materials: The slab waveguide consists of
AS,S3[1 1], the media in regions A and B are Te02[12],

and the medium between two lines is assumed to be

K, LizNb3015[13] as an anisotropic material and YIG [6]

as a gyrotropic material. Operation wavelength is assumed

to be & c= 1. 152,um. The ordinate is a propagation con-

stant /3’ normalized by the propagation constant in free

space k. (= co ~eopo), and the abscissa is a film thickness

di, or dz, of the line 1, or line 2, normalized by a free-space

wavelength & (= 2n~kO).

Since the permittivity tensor k’ is diagonal, TE and TM

modes of propagation can be supported in the basic systems.

The normalized propagation constant /l’/ko of the guided

modes in a dielectric slab waveguide possesses two limiting
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values. The upper limit is determined by the refractive index

of the film, whereas the lower limit is determined by either

one of the refractive indices of the surrounding media whose

refractive index is larger than the other. In the case of our

numerical example, the lower limits of the normalized

propagation constant of the elementary modes in two basic

systems are different for the TE modes and the TM modes

as we can see from Fig. 3. The TE modes of line 1 are cut off

at /Y/k. = 45.23 = 2.29 while the TM modes at ~/k. =

~4.84 = 2.20. Similarly, the TE modes of line 2 are cut off

at 2.20 and the TM modes at 2.29. By choosing the film

thicknesses dl,dz of lines 1 and 2 appropriately, the ele-

mentary modes of lines 1 and 2 can be degenerated. The

points in Fig. 3 (i.e., dl/10 = 0.173 and d2/lo = 0.200)

show the example of the film thicknesses for which the

dominant TE mode (TEO) of line 1 and the dominant TM

mode (TMO) of line 2 are degenerated.

where /11 and ~z are the propagation constants of the

elementary modes TEO and TMO of lines 1 and 2, respec-

tively. The matrix [S]F given by (4) can be regarded as a

scattering matrix with respect to the waves propagating in

the positive z direction, i.e., the forward waves. We will

&rive in Section IV-A the scattering matrix which dkscribes

the whole system including both forward and backward

waves.

L and P Perturbations: The matrii elements in [s]~ are

given by

S’ll = cos cz – jA sin cz

S12 = –j(l/a)~l – AZ sin cz

Szl = –ju~l – A2 sin cz

S22 = cos cz + j A sin cz (5)

where

III. ANALYSIS BASED ON THE VARIATIONAL METHOD

A. Normal Mode Analysis of the Perturbed Systems

Since the off-diagonal terms in 2 which appeared as a

result of the perturbation are actually very small in most

practical cases, the’ electromagnetic fields of the normal

modes propagating along the perturbed systems can be

expressed approximately in terms of the linear combinations

of the elementary modes of lines 1 and 2.

Let us suppose now that, by choosing the film thicknesses

dl and d2 appropriately, the TEO mode of line 1 and the

TMO mode of line 2 are degenerated or nearly degenerated,

and the coupling between these two degenerated modes and

other modes is small enough to be negligible. Then the field

distributions of the normal mode in the perturbed system

can be expressed by the linear combinations of the electric

and magnetic fields of the elementary modes TEO and TMO.

Hence, applying the variational technique given in [14], the

sufficiently precise value of the propagation constant and

the field distributions of the normal mode in the perturbed

systems can be obtained. If the spacing between lines 1 and

2 is very small, or the difference between the refractive

indices of the film and the intermedium between the two

lines is very small, the accuracy of the aforementioned

method of analysis becomes poor. This will be discussed

in Section III-B with numerical examples.

Let the normalized complex amplitudes of the TEIO mode

of line 1 and the TMO mode of line 2 be al(z) and az(z),

respectively. Then, the complex amplitudes al(z) and az(z)

can be expressed in terms of the complex amplitudes al(0)

and a2(0) at the beginning of the coupling portion z = O as

follows :

lx] =‘s]’E%] ‘exp(-jpoz)]‘3)
where

[S]F = p,: ::
1

(4)

and

Do = (P1 + P2)/2

A = (d/F)/~1 + (d/F)2” F = lNl,’1/4~o

J
03

Nij’ = OJEo ei ‘ (R -- t?’)ej dX (i, j = 1, 2). (6)
–m

Nij’ is regarded as a perturbation term in which el and e2

denote the electric field vectors of the TEO mode of line 1

and the TMO mode of the line 2, respectively. For each

perturbation, the coefficient a in the equations given by (5)

becomes as follows:

for AL and GP perturbations, and

(7)

(8)

for GL and AP perturbations, where ~12’ in (8) is a real

quantity defined as such NI z’ = j~lz’ and j = ~~1.

GE Perturbation: The scattering matrix defined by (3)

becomes diagonal in the form

[s]’ = p $yoz) o
exp [j(~~o – A~2)Z] 1

(9)

where

A/12 = N2z’/D2z. (10)

In the case of L- and P-perturbation systems, the coupling

may occur between TEO and TMO modes since S’lz # O

and S2 ~ # O as shown in (5). Further, by comparing AL

perturbation with GL perturbation, it can be seen that the

TMO mode output is 90° out of phase with respect to the
TEO mode. Simiktrly, by comparing GP perturbation with

AP perturbation, we found that the phase of the TEO mode

output is different in 90° from that of the TMO mode.

In the case of GE perturbation, no mode conversion

between TEO and TMO modes can be expected, and the

TMO mode suffers additional phase shift due to the pertur-

bation in the amount of A/3zz. AE perturbation, on the

other hand, causes no influence on both TEO and TMO
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modes. We shall omit, therefore, the case of the AE perturba-

tion in the following considerations.

In order to discuss the wave propagation characteristics

such as, for instance, the nonreciprocal properties of the

perturbed systems, the backward waves must be taken into

consideration as well as the forward waves.

The scattering matrices [SJB for the backward waves can

be derived by a similar manner as that described in [7].

In the result, for both AL- and GL- perturbation systems, the

scattering matrices [S]B for the backward waves become

entirely the same as [s]~ for the forward waves, while in

P-perturbation systems, the signs of off-diagonal terms Slz

and S2 ~ are reversed, and in GE-perturbation systems, the

sign of A/?z is reversed.

By comparing the matrices [S]B with that for the forward

waves given by (4) and (9), we find the following features of

the wave propagation characteristics of the perturbed

systems: The L-perturbation systems are bilateral, since the

scattering matrices are invariant regardless of the direction

of the wave propagation. On the contrary, in the P-pertur-

bation systems, the phase shift for the TMO(TEO) mode

output relative to the TEO(TMO) mode input shows 180°

difference between forward and backward directions of

propagation. In the EG-perturbation system, on the other

hand, the phase of the TMO mode lags by A~2z in the for-

ward direction, while it leads by A~2z in the backward

direction, both comparing with that in the unperturbed

systems.

B. Numerical Example

Fig. 4 illustrates numerically the normalized propagation

constants fl/kO of the normal modes propagating in the

forward direction in L-, P-, and GE-perturbation systems.

The film thicknesses dl and dz of line 1 and line 2 were

chosen as dl/& = 0.173 and d2/& = 0.200 so that the

TEO mode of line 1 and TMO mode of line 2 are degenerated

as shown in Fig. 3. In our example, the TMO mode of line 1

and TEO mode of line 2 can also be propagated. However,

the coupling between these two modes and the afore-

mentioned degenerated TEO mode of line 1 and TMO mode

of line 2 is weak enough to be negligible because the differ-

ences of propagation constants between these two mode

groups are sufficiently large (about 102 times) compared

with the perturbation terms as we can see from Fig. 3. It can

be shown further that, in our numerical example, the pro-

posed approximate method of analysis using only two ele-

mentary modes is certified with satisfactory accuracy as long

as the spacing 2t between two lines is greater than AO/2 (i.e.,

2t/& > 0.5). However, in order to obtain the sufficiently

strong coupling, it is desirable to choose the spacing 2t

smaller than about 1.520 (i.e., 2t/& < 1.5).

We can see from Fig. 4 that the normalized propagation

constants of the normal modes in the L- and P-perturbation

systems approach that of the degenerated elementary

modes, DI [kO = ~2/k0 = 2.2968, as increasing the spacing
between two lines. In the GE-perturbation system, on the

other hand, either one of the propagation constants varies

in the amount of Af12 due to the perturbation.

dl/AO= 0.173

~

2.297o —

2.2968
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Fig. 4. Dispersion curve for forward normal modes of L-, P-, and GE-
perturbation systems.
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Fig. 5. Circuit-theoretic model for the coupled wavegoide system.

IV. TREATMENT OF THE PERTURBED WAVEGUIDE SYSTEMS

USING A SCATTERING MATRIX

A. Scattering Matrix for the Whole System

Let us take only two degenerated elementary modes into

consideration as mentioned in the preceding example. If we

assign one port to each input end of particular forward and

backward elementary modes, the perturbed waveguide
system can be expressed as shown in Fig. 5. The ports @

and @ denote the input ends of the forward and backward

TEO mode of line 1, respectively, while the ports@ and@

represent the input ends of the forward and backward TMO
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mode of line 2, respectively. al(z) and az(z) are the normal-

ized complex amplitudes of the TEO mode of line 1 and

TMO mode of line 2, respectively. A superscript @

(i = 1,2,3,4) denotes the port number, and the subscripts

“in” and “out” mean input and output, respectively. The

scattering matrix describing the whole system can then be

expressed as

Uout = exp ( –j~Ol)[S] “ ain

o [s]’[s]= [[s]F ()
1

(11)

where [S]F and [S]B are the scattering matrices for the

forward and backward waves, respectively, obtained in the

preceding section, 1 denotes the length of the system, and

@@@
aout = ‘(~l%$az~utyal outja2out)

ain = ~(al~.,a,~n,a~n,a~n)

[1

0’= o 0
00”

(12)

In (12), Tdenotes the transpose. Since the system is assumed

to be dissipation free, the scattering matrix [S] is unitary.

The system is reciprocal provided that the scattering

matrix is symmetrical. On the contrary, if

[S]F # ‘[s-y (13)

the system becomes nonreciprocal. The reciprocal and non-

reciprocal properties of the perturbed waveguide systems

can then be summarized as follows.

L perturbations: The AL-perturbation system is recipro-

cal, but the GL-perturbation system is nonreciprocal.

P perturbations: The AP-perturbation system is recipro-

cal, whereas the GP-perturbation system is nonreciprocal.

GE perturbation: The GE-perturbation system is non-

reciprocal.

B. Application to a Nonreciprocal Mode Converter

As stated in the preceding section, the AL- and AP-

perturbation systems show the reciprocal mode conversion

while the GL- and GP-perturbation systems possess the

property of nonreciprocal mode conversion, and the GE-

perturbation system presents the nonreciprocal phase shift.

As an example of application of these perturbed systems,

let us consider the nonreciprocal optical IC mode converter

consisting of the GL–AP combination system as shown in

Fig. 6. Again we shall assume that the TEO mocle of line 1

and the TMO mode of line 2 are degenerated. In this case,

A given by (6) vanishes. Let us designate c in (5) as c~~ and

CAPfor the GL and AP perturbations, respectively. Let us

assume also that the lengths of the GL- and AP-perturba-

tion systems are so chosen that

Then, the scattering matrix for the forward wave is yielded

by multiplying the matrices for the GL- and AP-perturba-

-—p forward wave

+ backward wave

ON “8@
GL AP

3
%MO

T@

Fig. 6. Nonreciprocal mode converter consisting of GL-AP
combination system.

dllAO=0.173

d21A=0.200 line 2 Kf

k —

region B ‘FB

Fig. 7. Numerical design example of circulator using GL-AP
combination system.

tion systems given by (4) as follows:

[1
[s]’ = [S]APF “ [S]GLF = _; : . (15)

Similarly, the scattering matrix for the backward wave is

given by

[1
[s]’ = [s]GL’ “ [s]A,B = ; : . (16)

It can be seen from (15) and (16) that this system acts as a

circulator rotating the port @ -+ @ ~ Q) a @. Fig. 7

shows the numerical design example of this circulator.
Unlike conventional optical circulators proposed previ-

ously, this circulator requires no mode separators at both

input and output ports. Furthermore, the line 1 or line 2 of

this system can also be utilized as an isolator for the TEO

mode or the TMO mode, respectively, without using the

mode filters at both input and output ports.

Besides this example, a wide variety of reciprocal and
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nonreciprocal optical IC devices possessing various func-

tions would be constructed by using the perturbed systems

treated in the present paper.

V. CONCLUSION

The coupled optical waveguides, consisting of two iso-

tropic dielectric slab waveguides coupled through aniso-

tropic or gyrotropic materials inserted between them, have

been treated theoretically in detail. It has been found that

the AL- and Af’-perturbation systems show the reciprocal

mode conversion, while the GL- and GP-perturbation sys-

tems possess the property of nonreciprocal mode conversion,

and the GE-perturbation system causes nonreciprocal phase

shift for the TMO mode, whereas the AE-perturbation

system shows no influence upon both TEO and TMO modes.

As an example of application of these perturbed systems,

the nonreciprocal optical IC mode converter has been pro-

posed, and the numerical design example of the optical IC

circulator has been given. This circulator requires no mode

separators at both input and output ports. This circulator

can also be utilized as an isolator without using mode filters

at both input and output ports. In order to realize these

devices, the progress of the fabrication techniques, together

with the development of magnetooptic materials which

possess a large Faraday effect, is required.

ACKNOWLEDGMENT

The authors wish to thank Prof. M. Matsuhara and

K’. Morishita for their useful and stimulative discussions.

REFERENCES

[1] D. F. Nelson and J. McKenna, “Electromagnetic modes of
anisotropic dielectric waveguides at p-n junctions,” J. Appl. Phys.,
vol. 38, pp. 4057-4074, Sept. 1967.

[2] S. Yamamoto, Y. Koyamada, and T. Makimoto, “Normal-mode
analysis of anisotropic and gyrotropic thin-film waveguides for
~~~~ted optics;’ J. Appl, Phys., vol. 43, pp. 5090-5097, Dw.

[3] Y. Satomura, M. Matsuhara, and N. Kumagai, “Analysis of
electromagnetic-wave modes in anisotropic slab waveguide,”
IEEE Trans. Microwave Theory Tech., vol. MTT-22, DP. 86-92.
Feb. 1974.

..-

[4] S. Wang, M. Shah, and J. D. Crow, “Studies of the use of gyro-
tropic and anisotropic materials for mode conversion in thin-film
optical-waveguide applications,” J. Appl. Phys., vol. 43, pp. 1861–
1875, Apr. 1972.

[5] J. Warner, “Faraday optical isoIator/gyrator design in planar
dielectric waveguide form,” IEEE Trans. Microwave Theory
Tech., vol. MTT-21, pp. 769–775, Dec. 1973.

[6] J. Warner, “Nonreciprocal magnetooptic waveguides,” IEEE
Trans. Microwave Theory Tech., vol. MTT-23, pp. 70-78, Jan.
1975.

[7] S. Yamamoto and T. Makimoto, “Circuit theory for a class of
anisotropic and gyrotqopic thin-film optical waveguides and design
of nonreciprocal dewces for integrated optics,” J. Appl. Phys.,
vol. 45, pp. 882–888, Feb. 1974.

[8] ‘F. Auracher and H. H. Whitte, “A new design for an integrated
optical, isolator:’ Opt. Corn., vol. 13, pp. 435-438, Apr. 1975.

[9] S. Yamamoto, Y. Okamoto, and T. Makimoto, “One-section
design of composite-type nonreciprocal thin-film optical devices,”
Trans. IECE Japan, vol. 58-C, pp. 491-492, Aug. 1975.

[10] S. Kurazono, K. Iwasaki, and N. Kumagai, “A new optical
modulator consisting of coupled optical waveguides,” Trans.
IECE Japan, vol. 55-C, pp. 61-67, Jan. 1972.

[11] L. Bornstein, Physical Tables, vol. 2, part 8. Berlin, Germany:
Surimrer. 1962. DD. 2427.

[121 N. U~h~da, “Op~ical properties of single-crystal paratelluritej’
Ptiys. Rev. B., vol. 4, pp. 3736-3745, Nov. 1971.

[13] L. G. Van Uitert, S. Singh, H. J. Levinstein, J. E. Geusic, and
W. A. Bonner. “A new and stable nonlinear o~tical material.”
Appl. Phys. Le;t., vol. 11, pp. 161-163, Sept. 1967.

[14] M. Matsuhara and N. Kumagai, “Theory of coupled open
transmission lines and its applications;’ IEEE Trans. Microwave
Theory Tech., vol. MTT-22, pp. 378-382, Apr. 1974.

Linear Power Responses of an Optical Fiber
CHARLES VASSALLO

Abstract—It is known that an optical fiber hehaves linearly in terms of

power when the modulation frequeney is smaller than the spectrum width
of the light source. In order to calculate the impulse or frequency power
responses with a modal calculation, it is shown that the powers carried
by tbe different modes are independent in usual cases. Different formulas

are proposed for the linear responses when there is no mode coupling,
and the corresponding validity conditions are given.

I. INTRODUCTION

A
DESIRABLE characteristic of any transmission

system is the linear relation between the output and

input variables. In the case of transmission through optical

fibers, the output variable is the current generated by the

Manuscript received August 30, 1976;. revised November 5, 1976.
The author is with the Centre Nrmonal d’Etudes des T616com-

munications, 22301 Lannion, France.

photodetector, and it is proportional to the optical power.

Then the fiber must be linear in terms of power. Some
aspects of this linearity have already been studied [1], [2].

Itmaybe obtained by using an incoherent source of spectral

width Av when the modulation frequencies are quite lower

than Av [1].

A modal calculation of the impulse and frequency power

responses, when there is no mode coupling, is proposed

(Section III). But before exposing our results, we

justify the validity of such a method (Section II).

II. Do DIFFERENT MODES CARRY INDEPENDENT

CONTRIBUTIONS TO THE GUIDED POWER?

must

It is commonly assumed that the answer is positive.

Since powers of unmodulated modes are independent in

case of lossless guides only, we shall consider our fiber as a


