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Theory and Applications of Coupled Optical |
Waveguides Involving Anisotropic or
Gyrotropic Materials

KENICHI KITAYAMA, MEMBER, IEEE, AND NOBUAKI KUMAGALI, SENIOR MEMBER, IEEE

Abstract—Coupled optical waveguides consisting of two isotropic
dielectric slab waveguides coupled through anisotropic or gyrotropic
materials inserted between them, are treated theoretically in detail. The
properties of reciprocal and nonreciprocal TE-TM mode conversion and
a nonreciprocal phase shift for TM modes are shown. As an example of
application of this type of coupled waveguide, a nonreciprocal optical
integrated circuit (IC) mode converter is proposed. It is shown that a
circulator and an isolator which require neither mode separators nor
mode filters can be constructed by utilizing the proposed nonreciprocal
mode converter. The numerical design examples are also given.

I. INTRODUCTION

PTICAL integrated circuits (IC’s) with anisotropic or
O gyrotropic materials are of great interest from both
the theoretical and the practical points of view. 8o far, the
electromagnetic wave modes propagating along an aniso-
tropic or gyrotropic slab waveguide have been analyzed by
several authors [ 1]~[3], and various optical IC devices such
as mode converter, isolator, circulator, etc., using a wave-
guide involving an anisotropic or gyrotropic medium have
been proposed [4]-[9].

In the present paper, the coupled optical waveguides,
consisting of two parallel isotropic dielectric slab wave-
guides coupled through anisotropic or gyrotropic materials
inserted between them, are considered. This is one of the
simplest and most typical configurations of the optical IC
involving an anisotropic or gyrotropic material. For
example, an optical modulator using this type of coupled
waveguide has been proposed previously [10]. To the
authors’ knowledge, however, the detailed analysis of the
aforementioned coupled waveguides has not yet been
reported so far.

In this paper, the general features of the wave propaga-
tion characteristics of this type of coupled waveguide are
analyzed theoretically in detail, and the nonreciprocal
optical IC mode converter is proposed as an example of
application. It is shown that a circulator and an isolator
requiring neither mode separators nor mode filters can be
constructed utilizing the proposed nonreciprocal mode
converter. The numerical design examples are also given.
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II. WAVEGUIDE CONFIGURATION AND THE BASIS
OF ANALYSIS

A. Waveguide Configuration

The coupled waveguide to be considered is a two-
dimensional structure, as shown in Fig. 1, being uniform in
the y direction. The direction of wave propagation is
parallel to the z axis. Lines 1 and 2 are the isotropic dielectric
slab waveguides whose permittivity is gk, where g, is the
permittivity in vacuum. The medium between lines 1 and 2
is anisotropic or gyrotropic with tensor permittivity gyk.
The permittivity tensors g€, and gy Rp in regions 4 and B,
respectively, are assumed to be diagonal. It is assumed that
the permeabilities in all regions are equal to the permea-
bility in vacuum p,. It is assumed further that the media
involved are dissipation free.

The specific permittivity tensor £ is expressed, in general,
in the form

Kxx ny Kyz
— *
R = lx, Kyy Ky (€8]
* 3
Kz K:yz Kz

where the asterisk denotes the complex conjugate. We shall
distinguish the anisotropic material from the gyrotropic
material in the following manner: The anisotropic material
is a matter for which all the off-diagonal terms in & are real
while the gyrotropic material is a matter for which all the
off-diagonal terms in £ are pure imaginary. The diagonal
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TABLE 1
CLASSIFICATION OF PERTURBED SYSTEMS
Longitudinal(L) Polar (P) Equatorial(E)
© 0 K [ 0 S 0
XX Xy xx XX Xz
R k*  x 0 0 x 3 0 « 0
Xy ¥y yy ¥z yy
0 0 « 0 k* K* 0«
2z yz 2z XZ zz
AL AP AE
Anisotropic(a)
K., k* : real K, k* 1 real K__, ¥X* : real
xy® xy vz’ “yz xz’ Xz
GL GP GE
Gyrotropic(G)
ny, K;y: pure imag. Kyz, K;z: pure imag. Kyz? 5)’:2: pure imag.
(z direction)* (x direction)* (y direction)*

( * The direction of applied magnetic field ).

terms in K are real for both anisotropic and gyrotropic
media. The anisotropic property can be realized by applying
an electric field to the electrooptic materials, or rotating the
crystal axis of the optical crystals. The gyrotropic property,
on the other hand, can be obtained by applying a magnetic
field to the magnetooptic materials.

B. Basis of the Analysis

In most practical cases, the change of the material con-
stants of electrooptic or magnetooptic materials caused by
the applied electric or magnetic fields is very small. There-
fore, the coupled waveguides system shown in Fig. 1 can
be regarded as a slightly perturbed system, perturbed from
an unperturbed system which possesses the diagonal per-
mittivity tensor gyR’ in place of ¢y&, where 8’ is given by

Kew O O
R={0 Kk, O (unperturbed). )
0 0 «x.]

The nonzero off-diagonal terms in £ are thought to appear
as a result of slight perturbation caused by the applied
electric or magnetic fields. It is assumed that the diagonal
terms in £ and the tensor permittivities £, and £ in regions
A and B are not affected by the applied fields.

According to the positions of nonzero off-diagonal terms
in R, the perturbed coupled waveguides system shown in
Fig. 1 can be classified in three categories [7]. These are
longitudinal (L), polar (P), and equatorial (E) perturbations
as shown in Table I. Further, each perturbation is divided
into anisotropic (4) and gyrotropic (G) types. Consequently,
we have to treat the wave propagation characteristics about
the aforementioned six perturbed systems.

Let us consider now two individual basic waveguide
systems as shown in Fig. 2(a) and (b). This figure shows the
basic configurations of the individual lines 1 and 2. The
medium of permittivity tensor g,®’ extends in the regions of
x < tand x > —¢ for the basic configurations of the indi-
vidual lines 1 and 2, respectively. Hereafter, we shall refer to
the guided modes propagating in these two individual basic
waveguide systems as elementary modes.

Fig. 3 illustrates numerically the propagation constants
of the lowest two elementary modes of lines 1 and 2.
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Fig. 2. Geometry of two individual basic lines. (a) The basic con-
figuration of line 1. (b) The basic configuration of line 2.
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Fig. 3. Dispersion curves for the lowest two elementary modes
propagating along each individual basic line.

The values of the permittivities in the regjons used in the
numerical calculations are shown in the same figure.
The values used as a numerical example correspond to
the following materials: The slab waveguide consists of
As,S;[11], the media in regions 4 and B are TeO,[12],
and the medium between two lines is assumed to be
K;Li,NbsO,5[13] as an anisotropic material and YIG [6]
as a gyrotropic material. Operation wavelength is assumed
to be Ay &~ 1.152.um. The ordinate is a propagation con-
stant B’ normalized by the propagation constant in free
space k, (= v gollo), and the abscissa is a film thickness
dy, or d,, of the line 1, or line 2, normalized by a free-space
wavelength A, (= 2n/k,).

" Since the permittivity tensor ®’ is diagonal, TE and TM
modes of propagation can be supported in the basic systems.
The normalized propagation constant f'/k, of the guided
modes in a dielectric slab waveguide possesses two limiting



KITAYAMA AND KUMAGAI: COUPLED OPTICAL WAVEGUIDES

values. The upper limit is determined by the refractive index
of the film, whereas the lower limit is determined by either
one of the refractive indices of the surrounding media whose
refractive index is larger than the other. In the case of our
numerical example, the lower limits of the normalized
propagation constant of the elementary modes in two basic
systems are different for the TE modes and the TM modes
as we can see from Fig. 3. The TE modes of line 1 are cut off
at f'lky = V/5.23 = 2.29 while the TM modes at f'/k, =
\/ 4.84 = 2.20. Similarly, the TE modes of line 2 are cut off
at 2.20 and the TM modes at 2.29. By choosing the film
thicknesses dy,d, of lines 1 and 2 appropriately, the ele-
mentary modes of lines 1 and 2 can be degenerated. The
points in Fig. 3 (i.e., di/A, = 0.173 and d,/A, = 0.200)
show the example of the film thicknesses for which the
dominant TE mode (TE,) of line 1 and the dominant TM
mode (TM,) of line 2 are degenerated.

TII. ANALYSIS BASED ON THE VARIATIONAL METHOD
A. Normal Mode Analysis of the Perturbed Systems

Since the off-diagonal terms in ® which appeared as a
result of the perturbation are actually very small in most
practical cases, the' electromagnetic fields of the normal
modes propagating along the perturbed systems can be
expressed approximately in terms of the linear combinations
of the elementary modes of lines 1 and 2.

Let us suppose now that, by choosing the film thicknesses
d; and d, appropriately, the TE, mode of line 1 and the
TM, mode of line 2 are degenerated or nearly degenerated,
and the coupling between these two degenerated modes and
other modes is small enough to be negligible. Then the field
distributions of the normal mode in the perturbed system
can be expressed by the linear combinations of the electric
and magnetic fields of the elementary modes TE, and TM,,.
Hence, applying the variational technique given in [14], the
sufficiently precise value of the propagation constant and
the field distributions of the normal mode in the perturbed
systems can be obtained. If the spacing between lines 1 and
2 is very small, or the difference between the refractive
indices of the film and the intermedium between the two
lines is very small, the accuracy of the aforementioned
method of analysis becomes poor. This will be discussed
in Section III-B with numerical examples.

Let the normalized complex amptlitudes of the TE, mode
of line 1 and the TM, mode of line 2 be a,(z) and a,(z),
respectively. Then, the complex amplitudes a,(z) and a,(z)
can be expressed in terms of the complex amplitudes a,(0)
and a,(0) at the beginning of the coupling portion z = 0 as
follows:

[al(z)] _ [T [al(O)] [exp (—jBoz)] 3)

a,(z) a,(0)
where
Si; S
s =[5 s @
and

Bo = (By + £2)/2
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where B; and B, are the propagation constants of the
elementary modes TE, and TM, of lines 1 and 2, respec-
tively. The matrix [S]F given by (4) can be regarded as a
scattering matrix with respect to the waves propagating in
the positive z direction, i.e., the forward waves. We will
derive in Section IV-A the scattering matrix which describes
the whole system including both forward and backward
waves.

L and P Perturbations: The matrix elements in [S] are
given by

Siy = coscz — jAsincz
Sy, = —j(1jan/1 — A% sin ez
'S, = —jon/1 — A sin ¢z

S,, =coscz + jAsincz

&)

where
C = BoFV1 + (B/F) & = (B — BBy + B2)
A = (§/F)N1 + (/F)*  F = N.,'|/4B,

N, = weof ¢ (R — R)e;dX  (i,j=1,2). (6)

N;j is regarded as a perturbation term in which e, and e,
denote the electric field vectors of the TE, mode of line 1
and the TM, mode of the line 2, respectively. For each
perturbation, the coefficient a in the equations given by (5)
becomes as follows:

(N’ > 0)

_ [+
"= {“19 (N2’ <0) ™
for AL and GP perturbations, and
+i, Ny >0)
o= 5 S 8
{“‘J, Ny < 0) ®)

for GL and AP perturbations, where N,,’ in (8) is a real
quantity defined as such N,,’ = jN,,’ and j = /1.

GE Perturbation: The scattering matrix defined by (3)
becomes diagonal in the form

r [exp (=ioBoZ) 0
sy = ™ oo e - ap0z1] ©

where

Aﬁé = szl/D22~ (10)

In the case of L- and P-perturbation systems, the coupling
may occur between TE, and TM, modes since Sy, # 0
and S,; # 0 as shown in (5). Further, by comparing AL
perturbation with GL perturbation, it can be seen that the
TM, mode output is 90° out of phase with respect to the
TE, mode. Similarly, by comparing GP perturbation with
AP perturbation, we found that the phase of the TE, mode
output is different in 90° from that of the TM, mode.

In the case of GE perturbation, no mode conversion
between TE, and TM, modes can be expected, and the
TM, mode suffers additional phase shift due to the pertur-
bation in the amount of Af,z. AE perturbation, on the
other hand, causes no influence on both TE, and TM,
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modes. We shall omit, therefore, the case of the AE perturba-
tion in the following considerations.

In order to discuss the wave propagation characteristics
such as, for instance, the nonreciprocal properties of the
perturbed systems, the backward waves must be taken into
consideration as well as the forward waves.

The scattering matrices [S]? for the backward waves can
be derived by a similar manner as that described in [7].
In the result, for both AL- and GL- perturbation systems, the
scattering matrices [S]® for the backward waves become
entirely the same as [S] for the forward waves, while in
P-perturbation systems, the signs of off-diagonal terms S|,
and S, are reversed, and in GE-perturbation systems, the
sign of AB, is reversed.

By comparing the matrices [ S]® with that for the forward
waves given by (4) and (9), we find the following features of
the wave propagation characteristics of the perturbed
systems: The L-perturbation systems are bilateral, since the
scattering matrices are invariant regardless of the direction
of the wave propagation. On the contrary, in the P-pertur-
bation systems, the phase shift for the TMy(TE,) mode
output relative to the TE,(TM,) mode input shows 180°
difference between forward and backward directions of
propagation. In the EG-perturbation system, on the other
hand, the phase of the TM, mode lags by Af,z in the for-
ward direction, while it leads by Af,z in the backward
direction, both comparing with that in the unperturbed
systems.

B. Numerical Example

Fig. 4 illustrates numerically the normalized propagation
constants B/k, of the normal modes propagating in the
forward direction in L-, P-, and GE-perturbation systems.
The film thicknesses d; and d, of line 1 and line 2 were
chosen as d /2, = 0.173 and d,/A, = 0.200 so that the
TE, mode of line ! and TM,; mode of line 2 are degenerated
-as shown in Fig. 3. In our example, the TM, mode of line 1
and TE, mode of line 2 can also be propagated. However,
the coupling between these two modes and the afore-
mentioned degenerated TE, mode of line 1 and TM, mode
of line 2 is weak enough to be negligible because the differ-
ences of propagation constants between these two mode
groups are sufficiently large (about 10* times) compared
with the perturbation terms as we can see from Fig. 3. It can
be shown further that, in our numerical example, the pro-
posed approximate method of analysis using only two ele-
mentary modes is certified with satisfactory accuracy as long
as the spacing 27 between two lines is greater than 1,/2 (i.e.,
2t/dy > 0.5). However, in order to obtain the sufficiently
strong coupling, it is desirable to choose the spacing 2¢
smaller than about 1.5, (i.e., 2¢/1, < 1.5).

We can see from Fig. 4 that the normalized propagation
constants of the normal modes in the L- and P-perturbation
systems approach that of the degenerated elementary
modes, B,/ky = Ba/k, = 2.2968, as increasing the spacing
between two lines. In the GE-perturbation system, on the
other hand, either one of the propagation constants varies
in the amount of Af, due to the perturbation.
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Fig.4. Dispersion curve for forward normal modes of L-, P-, and GE-
perturbation systems.
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Fig. 5. Circuit-theoretic model for the coupled waveguide system.

IV. TREATMENT OF THE PERTURBED WAVEGUIDE SYSTEMS
USING A SCATTERING MATRIX

A. Scattering Matrix for the Whole System

Let us take only two degenerated elementary modes into
consideration as mentioned in the preceding example. If we
assign one port to each input end of particular forward and
backward elementary modes, the perturbed waveguide
system can be expressed as shown in Fig. 5. The ports (D
-and @ denote the input ends of the forward and backward
TE, mode of line 1, respectively, while the ports 3) and Q)
represent the input ends of the forward and backward TM,
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mode of line 2, respectively. a,(z) and a,(z) are the normal-
ized complex amplitudes of the TE, mode of line 1 and
TM, mode of line 2, respectively. A superscript @
(i = 1,2,3,4) denotes the port number, and the subscripts
“in” and “out” mean input and output, respectively. The
scattering matrix describing the whole system can then be
expressed as

Aoyt = CXp (_Jﬁol)[s] *in

1= [rsp 0]

where [S]° and [S]® are the scattering matrices for the
forward and backward waves, respectively, obtained in the
preceding section, / denotes the length of the system, and

(11

Aouy = T(a 1®out>a2(?utsa1®outsa2®out)
a4, = T(al(?maZGi\malc?maZ(?n)
o o0
0= .
o o]
In (12), T denotes the transpose. Since the system is assumed
to be dissipation free, the scattering matrix [ ST is unitary.

The system is reciprocal provided that the scattering
matrix is symmetrical. On the contrary, if

[ST" = "[sT” 13)

the system becomes nonreciprocal. The reciprocal and non-
reciprocal properties of the perturbed waveguide systems
can then be summarized as follows.

L perturbations: The AL-perturbation system is recipro-
cal, but the GL-perturbation system is nonreciprocal.

P perturbations: The AP-perturbation system is recipro-
cal, whereas the GP-perturbation system is nonreciprocal.

GE perturbation: The GE-perturbation system is non-
reciprocal.

(12)

B. Application to a Nonreciprocal Mode Converter

As stated in the preceding section, the AL- and AP-
perturbation systems show the reciprocal mode conversion
while the GL- and GP-perturbation systems possess the
property of nonreciprocal mode conversion, and the GE-
perturbation system presents the nonreciprocal phase shift.

As an example of application of these perturbed systems,

let us consider the nonreciprocal optical IC mode converter

consisting of the GL-AP combination system as shown in
Fig. 6. Again we shall assume that the TE, mode of line 1
and the TM, mode of line 2 are degenerated. In this case,
A given by (6) vanishes. Let us designate ¢ in (5) as ¢g;, and
cqp for the GL and AP perturbations, respectively. Let us
assume also that the lengths of the GL- and AP-perturba-
tion systems are so chosen that

cgrz = nf4 cqpz = T[4 14)
Then, the scattering matrix for the forward wave is yielded
by multiplying the matrices for the GL- and AP-perturba-

51
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Fig. 6. Nonreciprocal mode converter consisting of GL-AP
combination system.
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Fig. 7. Numerical design example of circulator using GL-AP
combination system.

tion systems given by (4) as follows:

[SY = Sk’ [81aa” = | ] g-

Similarly, the scattering matrix for the backward wave is
given by

15

[SF =[Sl [SL” = |g 3] 49
It can be seen from (15) and (16) that this system acts as a
circulator rotating the port O - @® > ® —» @. Fig. 7
shows the numerical design example of this circulator.

Unlike conventional optical circulators proposed previ-
ously, this circulator requires no mode separators at both
input and output ports. Furthermore, the line 1 or line 2 of
this system can also be utilized as an isolator for the TE,
mode or the TM, mode, respectively, without using the
mode filters at both input and output ports.

Besides this example, a wide variety of reciprocal and
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nonreciprocal optical IC devices possessing various func-
tions would be constructed by using the perturbed systems
treated in the present paper.

V. CoNcLUSION

The coupled optical waveguides, consisting of two iso-
tropic dielectric slab waveguides coupled through aniso-
tropic or gyrotropic materials inserted between them, have
been treated theoretically in detail. It has been found that
the AL- and AP-perturbation systems show the reciprocal
mode conversion, while the GL- and GP-perturbation sys-
tems possess the property of nonreciprocal mode conversion,
and the GE-perturbation system causes nonreciprocal phase
shift for the TM, mode, whereas the AFE-perturbation
system shows no influence upon both TE, and TM, modes.
As an example of application of these perturbed systems,
the nonreciprocal optical IC mode converter has been pro-
posed, and the numerical design example of the optical IC
circulator has been given. This circulator requires no mode
separators at both input and output ports. This circulator
can also be utilized as an isolator without using mode filters
at both input and output ports. In order to realize these
devices, the progress of the fabrication techniques, together
with the development of magnetooptic materials which
possess a large Faraday effect, is required.
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Linear Power Responses of an Optical Fiber

CHARLES VASSALLO

Abstract—1It is known that an optical fiber behaves linearly in terms of
power when the modulation frequency is smaller than the spectrum width
of the light source. In order to calculate the impulse or frequency power
responses with a modal calculation, it is shown that the powers carried
by the different modes are independent in usual cases. Different formulas
are proposed for the linear responses when there is no mode coupling,
and the corresponding validity conditions are given.

1. INTRODUCTION

DESIRABLE charaeteristic of any transmission
system is the linear relation between the output and
input variables. In the case of transmission through optical
fibers, the output variable is the current generated by the
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photodetector, and it is proportional to the optical power.
Then the fiber must be linear in terms of power. Some
aspects of this linearity have already been studied [1], [2].
It may be obtained by using an incoherent source of spectral
width Av when the modulation frequencies are quite lower
than Av [1].

A modal calculation of the impulse and frequency power
responses, when there is no mode coupling, is proposed
(Section IIT). But before exposing our results, we must
justify the validity of such a method (Section II).

II. Do D1FreRENT MODES CARRY INDEPENDENT
CONTRIBUTIONS TO THE GUIDED POWER?

It is commonly assumed that the answer is positive.
Since powers of unmodulated modes are independent in
case of lossless guides only, we shall consider our fiber as a



